Differential Forms and Wave Equations for General Relativity
نویسنده
چکیده
Recently, Choquet-Bruhat and York and Abrahams, Anderson, ChoquetBruhat, and York (aacy) have cast the 3+1 evolution equations of general relativity in gauge-covariant and causal “first-order symmetric hyperbolic form,” thereby cleanly separating physical from gauge degrees of freedom in the Cauchy problem for general relativity. A key ingredient in their construction is a certain wave equation which governs the light-speed propagation of the extrinsic curvature tensor. Along a similar line, we construct a related wave equation which, as the key equation in a system, describes vacuum general relativity. Whereas the approach of aacy is based on tensor-index methods, the present formulation is written solely in the language of differential forms. Our approach starts with Sparling’s tetrad-dependent differential forms, and our wave equation governs the propagation of Sparling’s 2-form, which in the “time-gauge” is built linearly from the “extrinsic curvature 1-form.” The tensor-index version of our wave equation describes the propagation of (what is essentially) the Arnowitt-Deser-Misner gravitational momentum. Vienna, December 1996 Preprint TUW-96-09 (revised). Research supported by the “Fonds zur Förderung der wissenschaftlichen Forschung” in Austria (Lise Meitner Fellowship M-00182-PHY and FWF Project 10.221-PHY). email address: [email protected]
منابع مشابه
Exact solutions for wave-like equations by differential transform method
Differential transform method has been applied to solve many functional equations so far. In this article, we have used this method to solve wave-like equations. Differential transform method is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Some examples are prepared to show theefficiency and simplicity of th...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملThe modified simplest equation method and its application
In this paper, the modified simplest equation method is successfully implemented to find travelling wave solutions of the generalized forms $B(n,1)$ and $B(-n,1)$ of Burgers equation. This method is direct, effective and easy to calculate, and it is a powerful mathematical tool for obtaining exact travelling wave solutions of the generalized forms $B(n,1)$ and $B(-n,1)$ of Burgers equation and ...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملDiscrete Differential Forms in General Relativity
A major obstacle in the numerical simulation of general relativistic space-times is the fact that coordinates have to be specified in order to obtain a well-defined numerical evolution. While the choice of coordinates has no impact on the geometry it does influence the evolution in ways which are rather difficult to predict. For this reason it might be useful to devise numerical procedures whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996